Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
J Thromb Haemost ; 13(2): 262-7, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25403348

RESUMO

BACKGROUND: Tissue factor (TF) promotes colocalization of enzyme (factor VIIa) and substrate (FX or FIX), and stabilizes the active conformation of FVIIa. Details on how TF induces structural and dynamic changes in the catalytic domain of FVIIa to enhance its efficiency remain elusive. OBJECTIVE: To elucidate the activation of allosteric networks in the catalytic domain of the FVIIa protease it is when bound to TF. METHODS: Long-timescale molecular dynamics simulations of FVIIa, free and in complex with TF, were executed and analyzed by dynamic network analysis. RESULTS: Allosteric paths of correlated motion from the TF contact point, Met306, in FVIIa to the active site triad can be described and quantified. In particular, the shortest paths from Met306 to Ser344 and His193 are 16% and 8% longer in free FVIIa than in TF-FVIIa, and they encompass previously undiscovered residue-residue interactions that are not likely to be inferred from mutagenesis studies. Furthermore, paths from Met306 to Ile153 (N-terminus) and Trp364, both representing hallmark residues of allostery, are 7% and 37% longer, respectively, in free FVIIa. Thus, there is significantly weaker coupling between the TF contact point and key residues in the catalytic domain of FVIIa, causing the active site triad to disintegrate in the simulation when TF is not present. CONCLUSIONS: These findings complement our current understanding of how the protease FVIIa is stimulated by TF. We demonstrate allosteric networks in the catalytic domain that are activated by TF and help to make FVIIa an efficient catalyst of FIX and FX activation.


Assuntos
Fator VIIa/metabolismo , Simulação de Dinâmica Molecular , Tromboplastina/metabolismo , Regulação Alostérica , Sítios de Ligação , Domínio Catalítico , Ativação Enzimática , Fator VIIa/química , Humanos , Ligação Proteica , Conformação Proteica , Relação Estrutura-Atividade , Tromboplastina/química
3.
J Thromb Haemost ; 8(8): 1763-72, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20524980

RESUMO

BACKGROUND: Canine models have been good predictors of efficacy of hemophilia treatments, including recombinant human coagulation factor (F)VIIa (hFVIIa). However, canine FVIIa and tissue factor (TF) have remained incompletely characterized. OBJECTIVE: To explore canine-human cross-species FVIIa-TF compatibility in order to strengthen the predictive value of canine models in research on FVIIa and TF. METHODS: Canine FVIIa (cFVIIa) and canine TF((1-217)) [cTF((1-217))] were produced by recombinant techniques, and canine-human cross-species FVIIa-TF interactions were characterized in vitro. RESULTS: Recombinant cFVIIa and soluble cTF((1-217)) were produced and purified to homogeneity. hFVIIa and cFVIIa bound with comparably high affinities to cTF((1-217)) (K(D)=6.0±0.7 nm and K(D)=6.0±0.3 nm, respectively) and to cell surface-expressed cTF (K(D)=8.4±0.4 nm and K(D)=7.2±1.2 nm, for (125) I-labeled hFVIIa and cFVII, respectively). In contrast, cFVIIa bound to human TF (hTF) with decreased affinity, both in solution and on cell surfaces. The decreased binding resulted in reduced activity of cFVIIa in functional assays with hTF((1-209)) . In direct comparison, cFVIIa was more active than hFVIIa, both in the absence and the presence of cognate TF. CONCLUSION: The present finding that hFVIIa binds to cTF essentially as it does to hTF substantiates the hypothesis that human FVIIa-TF biology can be reliably recapitulated in canine models on administration of hFVIIa to dogs.


Assuntos
Fator VII/metabolismo , Tromboplastina/metabolismo , Animais , Coagulação Sanguínea , Membrana Celular/metabolismo , Clonagem Molecular , Modelos Animais de Doenças , Cães , Fator VIIa/química , Fibroblastos/metabolismo , Humanos , Cinética , Ligação Proteica , Proteínas Recombinantes/química , Especificidade da Espécie
4.
Cell Mol Life Sci ; 65(6): 953-63, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18066494

RESUMO

Coagulation factor VIIa (FVIIa) is an atypical member of the trypsin family of serine proteases. It fails to attain spontaneously its catalytically competent conformation and requires its protein cofactor tissue factor (TF) to accomplish this. Over a number of years, this unique behaviour of FVIIa has prompted investigations of the TF-induced activation mechanism and the zymogenicity determinants in factor VIIa. Factor VIIa has gained additional interest in the past decade because of its development into a clinically useful haemostatic agent. Here, we present an overview of the current knowledge about the TF-induced allosteric activation of FVIIa and the various molecular approaches to enhance the intrinsic activity and efficacy of FVIIa.


Assuntos
Fator VIIa/metabolismo , Tromboplastina/metabolismo , Regulação Alostérica , Animais , Membrana Celular/metabolismo , Ativação Enzimática , Fator VIIa/química , Fator VIIa/genética , Humanos , Mutação/genética , Tromboplastina/química
5.
Biochemistry ; 40(49): 14812-20, 2001 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-11732900

RESUMO

Utilizing structure-based design, we have previously demonstrated that it is possible to obtain selective inhibitors of protein-tyrosine phosphatase 1B (PTP1B). A basic nitrogen was introduced into a general PTP inhibitor to form a salt bridge to Asp48 in PTP1B and simultaneously cause repulsion in PTPs containing an asparagine in the equivalent position [Iversen, L. F., et al. (2000) J. Biol. Chem. 275, 10300-10307]. Further, we have recently demonstrated that Gly259 in PTP1B forms the bottom of a gateway that allows easy access to the active site for a broad range of substrates, while bulky residues in the same position in other PTPs cause steric hindrance and reduced substrate recognition capacity [Peters, G. H., et al. (2000) J. Biol. Chem. 275, 18201-18209]. The current study was undertaken to investigate the feasibility of structure-based design, utilizing these differences in accessibility to the active site among various PTPs. We show that a general, low-molecular weight PTP inhibitor can be developed into a highly selective inhibitor for PTP1B and TC-PTP by introducing a substituent, which is designed to address the region around residues 258 and 259. Detailed enzyme kinetic analysis with a set of wild-type and mutant PTPs, X-ray protein crystallography, and molecular modeling studies confirmed that selectivity for PTP1B and TC-PTP was achieved due to steric hindrance imposed by bulky position 259 residues in other PTPs.


Assuntos
Desenho de Fármacos , Inibidores Enzimáticos/química , Proteínas Tirosina Fosfatases/antagonistas & inibidores , Proteínas Tirosina Fosfatases/química , Animais , Sítios de Ligação , Clonagem Molecular , Cristalografia por Raios X , Humanos , Isoenzimas/antagonistas & inibidores , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Modelos Moleculares , Estrutura Molecular , Estrutura Secundária de Proteína , Proteína Tirosina Fosfatase não Receptora Tipo 1 , Proteínas Tirosina Fosfatases/genética , Proteínas Tirosina Fosfatases/metabolismo
6.
Proc Natl Acad Sci U S A ; 98(24): 13583-8, 2001 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-11698657

RESUMO

A trace amount of coagulation factor VII (FVII) circulates in the blood in the activated form, FVIIa (EC 3.4.21.21), formed by internal proteolysis. To avoid disseminated thrombus formation, FVIIa remains in a conformation with zymogen-like properties. Association with tissue factor (TF), locally exposed upon vascular injury, is necessary to render FVIIa biologically active and initiate blood clotting. We have designed potent mutants of FVIIa by replacing residues believed to function as determinants for the inherent zymogenicity. The TF-independent rate of factor X activation was dramatically improved, up to about 100-fold faster than that obtained with the wild-type enzyme and close to that of the FVIIa-soluble TF complex. The mutants appear to retain the substrate specificity of the parent enzyme and can be further stimulated by TF. Insights into the mechanism behind the increased activity of the mutants, presumably also pertinent to the TF-induced, allosteric stimulation of FVIIa activity, were obtained by studying their calcium dependence and the accessibility of the N terminus of the protease domain to chemical modification. The FVIIa analogues promise to offer a more efficacious treatment of bleeding episodes especially in hemophiliacs with inhibitory antibodies precluding conventional replacement therapy.


Assuntos
Fator VIIa/metabolismo , Antitrombinas/farmacologia , Fator VIIa/antagonistas & inibidores , Fator VIIa/química , Fator VIIa/genética , Variação Genética , Mutagênese , Conformação Proteica , Relação Estrutura-Atividade , Tromboplastina/metabolismo
8.
J Comput Neurosci ; 10(3): 281-302, 2001.
Artigo em Inglês | MEDLINE | ID: mdl-11443286

RESUMO

We modeled a segmental oscillator of the timing network that paces the heartbeat of the leech. This model represents a network of six heart interneurons that comprise the basic rhythm-generating network within a single ganglion. This model builds on a previous two cell model (Nadim et al., 1995) by incorporating modifications of intrinsic and synaptic currents based on the results of a realistic waveform voltage-clamp study (Olsen and Calabrese, 1996). Due to these modifications, the new model behaves more similarly to the biological system than the previous model. For example, the slow-wave oscillation of membrane potential that underlies bursting is similar in form and amplitude to that of the biological system. Furthermore, the new model with its expanded architecture demonstrates how coordinating interneurons contribute to the oscillations within a single ganglion, in addition to their role of intersegmental coordination.


Assuntos
Sistema de Condução Cardíaco/fisiologia , Frequência Cardíaca/fisiologia , Modelos Cardiovasculares , Modelos Neurológicos , Rede Nervosa/fisiologia , Animais , Condutividade Elétrica , Oscilometria , Tempo de Reação/fisiologia , Sinapses/fisiologia
9.
J Biol Chem ; 276(31): 29195-9, 2001 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-11389142

RESUMO

Factor VII requires the cleavage of an internal peptide bond and the association with tissue factor (TF) to attain its fully active factor VIIa (FVIIa) conformation. The former event alone leaves FVIIa in a zymogen-like state of relatively low specific activity. We have designed a number of FVIIa mutants with the aim of mimicking the effect of TF, that is, creating molecules with increased intrinsic (TF-independent) enzymatic activity. Based on a possible structural difference between free and TF-bound FVIIa (Pike, A. C. W., Brzozowski, A. M., Roberts, S. M., Olsen, O. H., and Persson, E. (1999) Proc. Natl. Acad. Sci. U. S. A. 96, 8925--8930), we focused on the helical region encompassing residues 307-312 and residues in its spatial vicinity. For instance, FVIIa contains Phe-374 and Leu-305, whereas a Phe/Tyr residue in the position corresponding to 374 in homologous coagulation serine proteases is accompanied by Val in the position corresponding to 305. This conceivably results in a unique orientation of this helix in FVIIa. Substitution of Val for Leu-305 in FVIIa resulted in a 3--4-fold increase in the intrinsic amidolytic and proteolytic activity as compared with wild-type FVIIa, whereas the activity in complex with soluble TF remained the same. In accordance with this, L305V-FVIIa exhibited an increased rate of inhibition as compared with wild-type FVIIa, both by d-Phe-Phe-Arg-chloromethyl ketone and antithrombin III in the presence of heparin. The increased FVIIa activity upon replacement of Leu-305 by Val may be mediated by a movement of the 307--312 helix into an orientation resembling that found in factors IXa and Xa and thrombin. The corresponding shortening of the side chain of residue 374 (Phe --> Pro) had a smaller effect (about 1.5-fold increase) on the intrinsic activity of FVIIa. Attempts to increase FVIIa activity by introducing single or multiple mutations at positions 306, 309, and 312 to stabilize the 307-312 helix failed.


Assuntos
Fator VIIa/química , Fator VIIa/metabolismo , Leucina , Valina , Substituição de Aminoácidos , Coagulação Sanguínea , Fator VIIa/genética , Variação Genética , Humanos , Cinética , Modelos Moleculares , Mutagênese Sítio-Dirigida , Estrutura Secundária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo
11.
Biochemistry ; 40(11): 3251-6, 2001 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-11258943

RESUMO

The enzyme factor VIIa (FVIIa) triggers the blood coagulation cascade upon association with tissue factor (TF). The TF-induced allosteric enhancement of FVIIa's activity contributes to the procoagulant activity of the complex, and Met-306 in the serine protease domain of FVIIa participates in this event. We have characterized FVIIa variants mutated in position 306 with respect to their ability to be stimulated by TF. The amidolytic activity of FVIIa mutants with Ser, Thr, and Asn in position 306 was stimulated 9-, 12-, and 7-fold, respectively, by soluble TF as compared to 22-fold for wild-type FVIIa. In contrast, the activity of Met306Asp-FVIIa only increased about 2-fold and that of Met306Asp/Asp309Ser-FVIIa increased about 1.5-fold. Modeling suggests that Asp in position 306 prevents the TF-induced stimulation of FVIIa by disrupting essential intermolecular hydrogen bonds. The ability of the FVIIa variants to catalyze factor X activation and the amidolytic activity were enhanced to a similar extent by soluble TF. This indicates that factor X does not promote its own activation through interactions with exosites on FVIIa made accessible upon FVIIa-TF assembly. Met306Asp-FVIIa binds soluble TF with a dissociation constant of 13 nM (about 3-fold higher than that of FVIIa), and, in sharp contrast to FVIIa, its binding kinetics are unaltered after inactivation with D-Phe-Phe-Arg chloromethyl ketone. We conclude that a single specific amino acid replacement, substitution of Asp for Met-306, virtually prevents the TF-induced allosteric changes which normally result in dramatically increased FVIIa activity and eliminates the effect of the active site inhibitor on TF affinity.


Assuntos
Substituição de Aminoácidos , Ácido Aspártico , Fator VIIa/metabolismo , Metionina , Tromboplastina/metabolismo , Regulação Alostérica/genética , Substituição de Aminoácidos/genética , Animais , Ácido Aspártico/genética , Sítios de Ligação/genética , Catálise , Simulação por Computador , Fator VIIa/genética , Fator VIIa/isolamento & purificação , Humanos , Metionina/genética , Modelos Moleculares , Mutagênese Sítio-Dirigida , Ligação Proteica/genética , Coelhos , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Solubilidade
13.
Protein Sci ; 9(5): 859-66, 2000 May.
Artigo em Inglês | MEDLINE | ID: mdl-10850795

RESUMO

The protease domain of coagulation factor VIIa (FVIIa) is homologous to trypsin with a similar active site architecture. The catalytic function of FVIIa is regulated by allosteric modulations induced by binding of divalent metal ions and the cofactor tissue factor (TF). To further elucidate the mechanisms behind these transformations, the effects of Zn2+ binding to FVIIa in the free form and in complex with TF were investigated. Equilibrium dialysis suggested that two Zn2+ bind with high affinity to FVIIa outside the N-terminal gamma-carboxyglutamic acid (Gla) domain. Binding of Zn2+ to FVIIa, which was influenced by the presence of Ca2+, resulted in decreased amidolytic activity and slightly reduced affinity for TF. After binding to TF, FVIIa was less susceptible to zinc inhibition. Alanine substitutions for either of two histidine residues unique for FVIIa, His216, and His257, produced FVIIa variants with decreased sensitivity to Zn2+ inhibition. A search for putative Zn2+ binding sites in the crystal structure of the FVIIa protease domain was performed by Grid calculations. We identified a pair of Zn2+ binding sites in the Glu210-Glu220 Ca2+ binding loop adjacent to the so-called activation domain canonical to serine proteases. Based on our results, we propose a model that describes the conformational changes underlying the Zn2+-mediated allosteric down-regulation of FVIIa's activity.


Assuntos
Cálcio/metabolismo , Fator VIIa/metabolismo , Tromboplastina/metabolismo , Zinco/metabolismo , Alanina/química , Sítio Alostérico , Clorometilcetonas de Aminoácidos/química , Sítios de Ligação , Cálcio/química , Domínio Catalítico , Relação Dose-Resposta a Droga , Fator VIIa/química , Histidina/química , Humanos , Íons , Cinética , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Ressonância de Plasmônio de Superfície , Tromboplastina/química , Fatores de Tempo , Zinco/química
14.
J Biol Chem ; 275(14): 10300-7, 2000 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-10744717

RESUMO

Several protein-tyrosine phosphatases (PTPs) have been proposed to act as negative regulators of insulin signaling. Recent studies have shown increased insulin sensitivity and resistance to obesity in PTP1B knockout mice, thus pointing to this enzyme as a potential drug target in diabetes. Structure-based design, guided by PTP mutants and x-ray protein crystallography, was used to optimize a relatively weak, nonphosphorus, nonpeptide general PTP inhibitor (2-(oxalyl-amino)-benzoic acid) into a highly selective PTP1B inhibitor. This was achieved by addressing residue 48 as a selectivity determining residue. By introducing a basic nitrogen in the core structure of the inhibitor, a salt bridge was formed to Asp-48 in PTP1B. In contrast, the basic nitrogen causes repulsion in other PTPs containing an asparagine in the equivalent position resulting in a remarkable selectivity for PTP1B. Importantly, this was accomplished while retaining the molecular weight of the inhibitor below 300 g/mol.


Assuntos
Inibidores Enzimáticos/farmacologia , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/química , Oxalatos/química , Oxalatos/farmacologia , Proteínas Tirosina Fosfatases/antagonistas & inibidores , Proteínas Tirosina Fosfatases/química , ortoaminobenzoatos/química , ortoaminobenzoatos/farmacologia , Animais , Asparagina , Ácido Aspártico , Sítios de Ligação , Domínio Catalítico , Cristalografia por Raios X , Desenho de Fármacos , Inibidores Enzimáticos/química , Cinética , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout , Modelos Moleculares , Conformação Molecular , Peso Molecular , Proteína Tirosina Fosfatase não Receptora Tipo 1 , Proteínas Tirosina Fosfatases/genética , Domínios de Homologia de src
15.
J Biol Chem ; 275(24): 18201-9, 2000 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-10748206

RESUMO

The aim of this study was to define the structural elements that determine the differences in substrate recognition capacity of two protein-tyrosine phosphatases (PTPs), PTP1B and PTPalpha, both suggested to be negative regulators of insulin signaling. Since the Ac-DADE(pY)L-NH(2) peptide is well recognized by PTP1B, but less efficiently by PTPalpha, it was chosen as a tool for these analyses. Calpha regiovariation analyses and primary sequence alignments indicate that residues 47, 48, 258, and 259 (PTP1B numbering) define a selectivity-determining region. By analyzing a set of DADE(pY)L analogs with a series of PTP mutants in which these four residues were exchanged between PTP1B and PTPalpha, either in combination or alone, we here demonstrate that the key selectivity-determining residue is 259. In PTPalpha, this residue is a glutamine causing steric hindrance and in PTP1B a glycine allowing broad substrate recognition. Significantly, replacing Gln(259) with a glycine almost turns PTPalpha into a PTP1B-like enzyme. By using a novel set of PTP inhibitors and x-ray crystallography, we further provide evidence that Gln(259) in PTPalpha plays a dual role leading to restricted substrate recognition (directly via steric hindrance) and reduced catalytic activity (indirectly via Gln(262)). Both effects may indicate that PTPalpha regulates highly selective signal transduction processes.


Assuntos
Proteínas Tirosina Fosfatases/metabolismo , Receptores de Superfície Celular , Animais , Sítios de Ligação , Cristalografia por Raios X , Glutamina/metabolismo , Glicina/metabolismo , Cinética , Camundongos , Modelos Moleculares , Oligopeptídeos/metabolismo , Conformação Proteica , Proteína Tirosina Fosfatase não Receptora Tipo 1 , Proteínas Tirosina Fosfatases Classe 4 Semelhantes a Receptores , Especificidade por Substrato , Domínios de Homologia de src
16.
Biophys J ; 78(5): 2191-200, 2000 May.
Artigo em Inglês | MEDLINE | ID: mdl-10777720

RESUMO

Molecular dynamics simulations of protein tyrosine phosphatase 1B (PTP1B) complexed with the phosphorylated peptide substrate DADEpYL and the free substrate have been conducted to investigate 1) the physical forces involved in substrate-protein interactions, 2) the importance of enzyme and substrate flexibility for binding, 3) the electrostatic properties of the enzyme, and 4) the contribution from solvation. The simulations were performed for 1 ns, using explicit water molecules. The last 700 ps of the trajectories was used for analysis determining enthalpic and entropic contributions to substrate binding. Based on essential dynamics analysis of the PTP1B/DADEpYL trajectory, it is shown that internal motions in the binding pocket occur in a subspace of only a few degrees of freedom. In particular, relatively large flexibilities are observed along several eigenvectors in the segments: Arg(24)-Ser(28), Pro(38)-Arg(47), and Glu(115)-Gly(117). These motions are correlated to the C- and N-terminal motions of the substrate. Relatively small fluctuations are observed in the region of the consensus active site motif (H/V)CX(5)R(S/T) and in the region of the WPD loop, which contains the general acid for catalysis. Analysis of the individual enzyme-substrate interaction energies revealed that mainly electrostatic forces contribute to binding. Indeed, calculation of the electrostatic field of the enzyme reveals that only the field surrounding the binding pocket is positive, while the remaining protein surface is characterized by a predominantly negative electrostatic field. This positive electrostatic field attracts negatively charged substrates and could explain the experimentally observed preference of PTP1B for negatively charged substrates like the DADEpYL peptide.


Assuntos
Proteínas Tirosina Fosfatases/química , Proteínas Tirosina Fosfatases/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Fenômenos Biofísicos , Biofísica , Modelos Moleculares , Oligopeptídeos/química , Conformação Proteica , Proteína Tirosina Fosfatase não Receptora Tipo 1 , Eletricidade Estática , Especificidade por Substrato , Termodinâmica
17.
Biophys J ; 77(4): 2237-50, 1999 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-10512843

RESUMO

Site-directed labeling was used to obtain local information on the binding interface in a receptor-ligand complex. As a model we have chosen the specific association of the extracellular part of tissue factor (sTF) and factor VIIa (FVIIa), the primary initiator of the blood coagulation cascade. Different spectroscopic labels were covalently attached to an engineered cysteine in position 140 in sTF, a position normally occupied by a Phe residue previously characterized as an important contributor to the sTF:FVIIa interaction. Two spin labels, IPSL [N-(1-oxyl-2,2,5, 5-tetramethyl-3-pyrrolidinyl)iodoacetamide] and MTSSL [(1-oxyl-2,2,5, 5-tetramethylpyrroline-3-methyl)methanethiosulfonate], and two fluorescent labels, IAEDANS [5-((((2-iodoacetyl)amino) ethyl)amino)naphthalene-1-sulfonic acid] and BADAN [6-bromoacetyl-2-dimethylaminonaphthalene], were used. Spectral data from electron paramagnetic resonance (EPR) and fluorescence spectroscopy showed a substantial change in the local environment of all labels when the sTF:FVIIa complex was formed. However, the interaction was probed differently by each label and these differences in spectral appearance could be attributed to differences in label properties such as size, polarity, and/or flexibility. Accordingly, molecular modeling data suggest that the most favorable orientations are unique for each label. Furthermore, line-shape simulations of EPR spectra and calculations based on fluorescence depolarization measurements provided additional details of the local environment of the labels, thereby confirming a tight protein-protein interaction between FVIIa and sTF when the complex is formed. The tightness of this local interaction is similar to that seen in the interior of globular proteins.


Assuntos
Fator VIIa/metabolismo , Corantes Fluorescentes/química , Corantes Fluorescentes/metabolismo , Modelos Moleculares , Marcadores de Spin , Tromboplastina/metabolismo , Sítios de Ligação , Dicroísmo Circular , Cisteína/química , Cisteína/metabolismo , Espectroscopia de Ressonância de Spin Eletrônica , Fator VIIa/química , Corpos de Inclusão , Ligantes , Mercaptoetanol/metabolismo , Mutação , Conformação Proteica , Desnaturação Proteica , Dobramento de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Espectrometria de Fluorescência , Tromboplastina/química , Tromboplastina/genética , Tromboplastina/isolamento & purificação
18.
Proc Natl Acad Sci U S A ; 96(16): 8925-30, 1999 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-10430872

RESUMO

Factor VIIa (EC 3.4.21.21) is a trypsin-like serine protease that plays a key role in the blood coagulation cascade. On injury, factor VIIa forms a complex with its allosteric regulator, tissue factor, and initiates blood clotting. Although the structure of the binary complex has already been determined [Banner, D. W., D'Arcy, A., Chène, C., Winkler, F. K., Guha, A., Konigsberg, W. H., Nemerson, Y. & Kirchhofer, D. (1996) Nature (London) 380, 41-46], the conformational effects of cofactor binding to factor VIIa are not known in detail because of a lack of structural information on free factor VIIa. Here we report the structure of gamma-carboxyglutamic acid-domainless human coagulation factor VIIa at a resolution of 2.8 A. The molecule adopts an extended conformation within the crystal similar to that previously observed for the full-length protein in complex with tissue factor. Detailed comparison of free and tissue factor-bound factor VIIa reveals several structural differences. The binding mode of the active-site inhibitor D-Phe-Phe-Arg methyl ketone differs in the two structures, suggesting a role for the cofactor in substrate recognition. More importantly, a surface-exposed alpha-helix in the protease domain (residues 307-312), which is located at the cofactor recognition site, is distorted in the free form of factor VIIa. This subtle structural difference sheds light on the mechanism of the dramatic tissue factor-induced enhancement of factor VIIa activity.


Assuntos
Coagulação Sanguínea/fisiologia , Fator VIIa/química , Fator VIIa/metabolismo , Sequência de Aminoácidos , Cristalização , Cristalografia por Raios X , Endopeptidases/química , Fator de Crescimento Epidérmico/química , Fator VIIa/isolamento & purificação , Humanos , Substâncias Macromoleculares , Modelos Moleculares , Dados de Sequência Molecular , Conformação Proteica , Estrutura Secundária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo
19.
Biophys J ; 77(1): 505-15, 1999 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-10388775

RESUMO

Activity of enzymes, such as protein tyrosine phosphatases (PTPs), is often associated with structural changes in the enzyme, resulting in selective and stereospecific reactions with the substrate. To investigate the effect of a substrate on the motions occurring in PTPs, we have performed molecular dynamics simulations of PTP1B and PTP1B complexed with a high-affinity peptide DADEpYL, where pY stands for phosphorylated tyrosine. The peptide sequence is derived from the epidermal growth factor receptor (EGFR988-993). Simulations were performed in water for 1 ns, and the concerted motions in the protein were analyzed using the essential dynamics technique. Our results indicate that the predominately internal motions in PTP1B occur in a subspace of only a few degrees of freedom. Upon substrate binding, the flexibility of the protein is reduced by approximately 10%. The largest effect is found in the protein region, where the N-terminal of the substrate is located, and in the loop region Val198-Gly209. Displacements in the latter loop are associated with the motions in the WPD loop, which contains a catalytically important aspartic acid. Estimation of the pKa of the active-site cysteine along the trajectory indicates that structural inhomogeneity causes the pKa to vary by approximately +/-1 pKa unit. In agreement with experimental observations, the active-site cysteine is negatively charged at physiological pH.


Assuntos
Receptores ErbB/química , Ligantes , Proteínas Tirosina Fosfatases/química , Algoritmos , Simulação por Computador , Cisteína/química , Concentração de Íons de Hidrogênio , Modelos Moleculares , Fragmentos de Peptídeos/química , Fosforilação , Ligação Proteica , Conformação Proteica , Estrutura Secundária de Proteína
20.
Protein Sci ; 8(1): 25-34, 1999 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-10210180

RESUMO

NMR spectroscopic analysis of the C-terminal Kunitz domain fragment (alpha3(VI)) from the human alpha3-chain of type VI collagen has revealed that the side chain of Trp21 exists in two unequally populated conformations. The major conformation (M) is identical to the conformation observed in the X-ray crystallographic structure, while the minor conformation (m) cannot structurally be resolved in detail by NMR due to insufficient NOE data. In the present study, we have applied: (1) rigid and adiabatic mapping, (2) free energy simulations, and (3) molecular dynamic simulations to elucidate the structure of the m conformer and to provide a possible pathway of the Trp21 side chain between the two conformers. Adiabatic energy mapping of conformations of the Trp21 side chain obtained by energy minimization identified two energy minima: One corresponding to the conformation of Trp21 observed in the X-ray crystallographic structure and solution structure of alpha3(VI) (the M conformation) and the second corresponding to the m conformation predicted by NMR spectroscopy. A transition pathway between the M and m conformation is suggested. The free-energy difference between the two conformers obtained by the thermodynamic integration method is calculated to 1.77+/-0.7 kcal/mol in favor of the M form, which is in good agreement with NMR results. Structural and dynamic properties of the major and minor conformers of the alpha3(VI) molecule were investigated by molecular dynamic. Essential dynamics analysis of the two resulting 800 ps trajectories reveals that when going from the M to the m conformation only small, localized changes in the protein structure are induced. However, notable differences are observed in the mobility of the binding loop (residues Thr13-Ile18), which is more flexible in the m conformation than in the M conformation. This suggests that the reorientation of Trp2 might influence the inhibitory activity against trypsin, despite the relative large distance between the binding loop and Trp21.


Assuntos
Colágeno/química , Cristalografia por Raios X , Humanos , Espectroscopia de Ressonância Magnética , Conformação Proteica , Termodinâmica , Triptofano/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...